9英寸長跡線的ADS模型,模仿了與相鄰被動線的耦合,模型帶寬為~8GHz。所示為ADS中使用MIL結構的兩條耦合傳輸線的簡單模型。所有物理和材料屬性均進行了參數配置,以便在以后進行更改。我們假設兩條均勻等寬線的簡單模型,有間距、長度、電介質的厚度、介電常數和耗散因素。我們使用千分尺從結構上測得的各種幾何條件,并使用從均勻傳輸線測得的相同的介電常數和耗散因素。ADS中的集成2D場解算器會自動用這些幾何值計算傳輸線的復合阻抗和傳輸特性,并模擬頻域插入損耗和回波損耗性能,與實際測量中的配置完全一樣。我們將TDR中測得的插入損耗數據以Touchstone格式帶入ADS,然后將測得的響應與模擬響應進行比較。圖34所示為插入損失的幅度(單位為分貝)和插入損失的相位。紅色圓圈是測得的數據,與TDR儀器屏幕的顯示相同。藍線是基于這個簡單模型的模擬響應,沒有參數擬合。單根傳輸線的信號完整性問題?安徽信號完整性測試檢查
一致性達到了驚人的約8GHz。這表明,沒有出現任何異常情況。沒有出現任何超出兩條耦合有損線正常行為的情況。在此例中,未被驅動的第二條線端接了50歐姆電阻,而模型的設置也與之匹配。我們看到,當一條單線用在一對線當中時,插入損耗上會出現反常的波谷,而當這條單線被隔離時,波谷并不會出現。通過場解算器我們證實了這一點,是相鄰線的接近在某種程度上導致了波谷的產生。引起這種災難性的行為效果并不反常,只是很微妙。我們可能花上幾個星期的時間在新的板子上陸續測試一個個效果,試圖找出影響此行為的原因。例如,我們可以改變耦合長度、線寬、間距、電介質厚度,甚至是介電常數和耗散因數,來探尋是什么影響了諧振頻率。我們也可以使用如ADS這樣的仿真工具進行同樣的虛擬實驗。只有當我們相信工具能準確地預測這種行為時,我們才可以用它來探索設計空間。遼寧信號完整性測試維修克勞德實驗室提供信號完整性測試軟件報告;
一般討論的信號完整性基本上以研究數字電路為基礎,研究數字電路的模擬特性。主要包含兩個方面:信號的幅度(電壓)和信號時序。
與信號完整性噪聲問題有關的四類噪聲源:1、單一網絡的信號質量2、多網絡間的串擾3、電源與地分配中的軌道塌陷4、來自整個系統的電磁干擾和輻射
當電路中信號能以要求的時序、持續時間和電壓幅度到達接收芯片管腳時,該電路就有很好的信號完整性。當信號不能正常響應或者信號質量不能使系統長期穩定工作時,就出現了信號完整性問題。信號完整性主要表現在延遲、反射、串擾、時序、振蕩等幾個方面。一般認為,當系統工作在50MHz時,就會產生信號完整性問題,而隨著系統和器件頻率的不斷攀升,信號完整性的問題也就愈發突出。元器件和PCB板的參數、元器件在PCB板上的布局、高速信號的布線等這些問題都會引起信號完整性問題,導致系統工作不穩定,甚至完全不能正常工作。
一項是信號完整性測試,特別是對于高速信號,信號完整性測試尤為關鍵。完整性的測試手段種類繁多,有頻域,也有時域的,還有一些綜合性的手段,比如誤碼測試。不管是哪一種測試手段,都存在這樣那樣的局限性,它們都只是針對某些特定的場景或者應用而使用。只有選擇合適測試方法,才可以更好地評估產品特性。下面是常用的一些測試方法和使用的儀器。(1)波形測試使用示波器進行波形測試,這是信號完整性測試中常用的評估方法。主要測試波形幅度、邊沿和毛刺等,通過測試波形的參數,可以看出幅度、邊沿時間等是否滿足器件接口電平的要求,有沒有存在信號毛刺等。波形測試也要遵循一些要求,比如選擇合適的示波器、測試探頭以及制作好測試附件,才能夠得到準確的信號。 信號完整性測試信號質量測試;
信號完整性(英語:Signal integrity, SI)是對于電子信號質量的一系列度量標準。在數字電路中,一串二進制的信號流是通過電壓(或電流)的波形來表示。然而,自然界的信號實際上都是模擬的,而非數字的,所有的信號都受噪音、扭曲和損失影響。在短距離、低比特率的情況里,一個簡單的導體可以忠實地傳輸信號。而長距離、高比特率的信號如果通過幾種不同的導體,多種效應可以降低信號的可信度,這樣系統或設備不能正常工作。信號完整性工程是分析和緩解上述負面效應的一項任務,在所有水平的電子封裝和組裝,例如集成電路的內部連接、集成電路封裝、印制電路板等工藝過程中,都是一項十分重要的活動。信號完整性考慮的問題主要有振鈴(ringing)、串擾(crosstalk)、接地反彈、扭曲(skew)、信號損失和電源供應中的噪音。信號完整性測量和數據后期處理;通信信號完整性測試系列
信號完整性測試總結及常見問題;安徽信號完整性測試檢查
ADC位數和小分辨率模數轉換器(ADC)是確保示波器自身信號完整性的關鍵技術。ADC位數與示波器的分辨率成正比。理論上講,10位ADC示波器的分辨率比8位ADC示波器高4倍。同理,12位ADC示波器相對于10位ADC示波器也是如此。圖2以10位ADCIn?niiumS系列示波器為例,實際驗證了上述結論。
多數示波器都是采用8位ADC,而S系列示波器采用的是40GSa/s10位ADC,分辨率提升了四倍。分辨率是指由示波器中的模數轉換器(ADC)所決定的小量化電平。8位ADC可將模擬輸入信號編碼為28=256個電平,即量化電平或Q電平。ADC在示波器量程內工作,因此在電流和電壓測量中,量化電平的步長與示波器的量程設置有關。如果垂直設置為100mV/格,則量程等于800mV(8格x100mV/格),量級電平分辨率就是3.125mV(即,800mV除以256個量化電平)。 安徽信號完整性測試檢查