BMS的中心使命是實時監控電池狀態并實施精細作用。在硬件層面,BMS通過高精度模擬前端(AFE)芯片(如ADI的LTC6811或TI的BQ76PL536)采集每節電芯的電壓(精度可達±1mV)、溫度(范圍覆蓋-40°C至125°C)以及充放電電流(通過分流電阻或霍爾傳感器實現±)。這些數據經主控芯片(如NXPS32K或STMicroelectronics的SPC58)處理后,執行三大關鍵任務:安全保護、狀態估算與能量管理。例如,當某節三元鋰電池電壓超過,BMS會立即切斷充電MOSFET,防止電解液分解引發熱失控;在低溫環境下(如-10°C),BMS可能通過PTC加熱片提升電芯溫度至5°C以上,以避免鋰析出導致的不可逆容量損失。對于多串電池組(如電動汽車的96串400V系統),BMS必須解決電芯不一致性問題——即使是同一批次的電芯,容量差異也可能達到2%-5%。被動均衡通過并聯電阻對電芯放電(典型均衡電流50-200mA),而主動均衡則利用電感或DC-DC轉換器將能量從電芯轉移至低壓電芯(效率可達85%以上),這兩種策略的取舍需權衡成本、效率與系統復雜度。 連電池BMS保護系統能夠實時獲取電池的基本參數,包括電壓、溫度和電流等。新能源BMS芯片
BMS保護板的被動均衡技術顧名思義,被動均衡就是將單體電池中容量稍多的個體消耗掉,實現整體的均衡。被動均衡又稱為能量耗散式均衡,工作原理是在每節電芯上并聯一個電阻,當某個電芯提前充滿,而又需要繼續給其他電芯充電時,通過電阻對電壓高的電芯以熱量形式釋放電量,為其他電芯爭取更多充電時間。由于被動均衡結構更為簡單,所以使用比較廣。但是被動均衡也有明顯的缺點,由于結構簡單制作成本低,采用電阻耗能產生熱量,從而會使整個系統的效率降低。并且均衡時間短,效果不佳,一般均衡時間都在充電周期末期。此外,只能對高電壓電池進行放電,無法對劣質電池進行改進。在適用場景上,被動均衡更適合于小容量、低串數的鋰電池組應用,可以釋放每顆電芯的儲能能力,實現電量的利用。 怎樣BMS管理需關注電池串數、電壓 / 電流范圍、均衡能力、通信協議(如 CAN、I2C)及安全認證。
從架構角度而言,BMS主要分為集中式和分布式兩種拓撲結構。集中式BMS通過一個硬件設備采集所有電池的數據,這種架構成本較低、結構緊湊且可靠性較高,適用于電池數量較少、容量較低、總電壓不高以及小型電池系統的場景,如電動工具、機器人(搬運機器人、助力機器人)、智能家居中的掃地機器人和電動吸塵器、電動叉車、低速電動車(電動自行車、電動摩托車、電動觀光車、電動巡邏車、電動高爾夫球車等)以及輕度混合動力汽車等。集中式BMS硬件可劃分為高壓區和低壓區,高壓區負責采集單電池電壓、系統總電壓以及監測絕緣電阻;低壓區則涵蓋電源電路、CPU電路、CAN通信電路、操控電路等。隨著乘用車動力電池系統朝著高容量、高總電壓和大體積方向發展,分布式BMS逐漸成為主流,特別是在插電式混合動力和純電動汽車中應用綜合。分布式系統將測量單元等電子設備直接安裝在與單電池集成的電路板上,其優勢明顯,具有極高的可擴展性,可細化到單個電池;連接可靠性高,幾乎不存在過長電纜,電池與測量電路緊密結合,減少了干擾和誤差,安全性也隨之提高;維護便捷,當某個小單元出現故障時,只需更換該單元即可。不過,其缺點是成本高昂,每個單元都需額外配備一套設備。
電池管理系統(BatteryManagementSystem,BMS),常被稱作電池保姆或管家,主要用于對電池單體進行智能管理與維護。其中心作用在于防止電池過充或過放,進而延長電池使用壽命,并實時監測電池狀態。BMS并非只是簡單的監控裝置,而是集多種復雜功能于一體的智能系統,通過各類傳感器、控制器以及精密算法,實現對電池的精細把控。BMS的功能豐富且關鍵。它能實時監測電池的電壓、電流、溫度等關鍵參數,杜絕過充、過放、過溫等狀況發生。以電動汽車為例,電池組由眾多電池單體構成,BMS需實時采集每個單體的電壓數據,與設定閾值比對,一旦出現單體電壓異常,便立即采取均衡充放電等措施,維持各單體電壓平衡。同時,通過溫度傳感器密切監測電池組內部溫度,防止過熱或過冷,必要時調整充放電電流,確保電池工作在適宜溫度區間。在充放電過程中,實時監測電流,既能用于計算電池剩余容量(SOC),又能防范因電流過大引發的安全危險。此外,BMS還可通過復雜算法估算電池的狀況(SOH),為用戶提供整體、準確的電池狀態信息,避免因狀態誤判導致危險,并且能夠實時診斷電池系統運行故障,迅速隔離異常,維護系統可靠性。 如何判斷 BMS 是否故障?
BMS可根據電池狀態動態調整充放電策略,在快充時操控電流速率以保護電池,在車輛行駛中優化能量分配,提升續航里程,還能與整車系統聯動,在發生碰撞、短路等緊急情況時迅速切斷電源,降低危險系數。在儲能系統中,無論是家庭儲能電站還是大型工商業儲能項目,BMS都承擔著關鍵角色,它能協調多組電池的充放電節奏,平衡電網峰谷負荷,當電網斷電時,BMS可迅速切換至備用供電模式,確保供電連續性,同時通過長期數據記錄分析電池狀態,為維護保養提供依據。在消費電子領域,智能手機、筆記本電腦等設備的BMS雖體積小巧,但功能精細,能動態調節充電電流,在電池接近滿電時自動降低電流,減少電池損耗,同時監測電池循環次數,提醒用戶及時更換老化電池。此外,在電動船舶、無人機、便攜式醫療設備等領域,BMS也發揮著重要作用,例如無人機的BMS可根據飛行姿態和電量消耗實時調整動力輸出,確保飛行穩定;醫療設備中的BMS則需滿足更高的可靠性要求,通過冗余設計防止電池突發故障影響設備運行,可見BMS已成為現代電池應用中不可或缺的關鍵技術。 電池均衡管理是通過控制策略使電池組中各個單體電池的電壓或容量保持一致,以提高電池組的整體性能和壽命。怎樣BMS方案定制
BMS 常見使用故障有哪些?新能源BMS芯片
分布式發電儲能:在太陽能、風能等分布式發電系統中,BMS 用于管理儲能電池,將多余的電能儲存起來,在需要時釋放,平滑發電功率波動,提高能源供應的穩定性和可靠性。如一些分布式光伏電站搭配的儲能系統,通過 BMS 實現了對電池的有效管理,提升了整個發電系統的性能。電網儲能:在智能電網中,BMS參與電網的調峰調頻、備用電源等功能。大規模的電池儲能系統通過 BMS 精確控制電池的充放電,響應電網的需求,提高電網的靈活性和穩定性。新能源BMS芯片