LPCVD設備的發展歷史可以追溯到20世紀50年代,當時美國貝爾實驗室的科學家們使用LPCVD方法在硅片上沉積多晶硅薄膜,并用于制造雙極型晶體管。隨后,LPCVD方法被廣泛應用于制造金屬氧化物半導體場效應晶體管(MOSFET)、動態隨機存儲器(DRAM)、太陽能電池等器件。20世紀70年代,LPCVD方法開始用于沉積氮化硅和氧化硅等絕緣薄膜,用于制造互連層、保護層、柵介質層等結構。20世紀80年代,LPCVD方法開始用于沉積碳化硅等寬禁帶半導體薄膜,用于制造高溫、高功率、高頻率等特殊應用的器件鍍膜技術可用于制造醫療設備的部件。河南真空鍍膜實驗室
PECVD(等離子增強化學氣相沉積或等離子體輔助化學氣相沉積),是一種利用等離子體在較低溫度下進行沉積的一種薄膜生長技術。等離子體中大部分原子或分子被電離,通常使用射頻(RF)產生,但也可以通過交流電(AC)或直流電(DC)在兩個平行電極之間放電產生。PECVD是一種基于真空的工藝,通常在<0.1Torr的壓力下進行,允許相對較低的基板溫度,從室溫到300°C。通過利用等離子體為這些沉積反應的發生提供能量,而不是將基板加熱到很高的的溫度來驅動這些沉積反應。由于PECVD沉積溫度較低,沉積的薄膜應力較小,結合力更強。云南共濺射真空鍍膜真空鍍膜技術為產品帶來獨特的功能性。
LPCVD技術是一種在低壓下進行化學氣相沉積的技術,它有以下幾個優點高質量:LPCVD技術可以在低壓下進行高溫沉積,使得氣相前驅體與襯底表面發生充分且均勻的化學反應,形成高純度、低缺陷密度、低氫含量、低應力等特點的薄膜材料。高均勻性:LPCVD技術可以在低壓下進行大面積沉積,使得氣相前驅體在襯底表面上有較長的停留時間和較大的擴散距離,形成高均勻性和高一致性的薄膜材料。高精度:LPCVD技術可以通過調節壓力、溫度、氣體流量和時間等參數來控制沉積速率和厚度,形成高精度和可重復性的薄膜材料。高效率:LPCVD技術可以采用批量裝載和連續送氣的方式來進行沉積。
單片反應器是一種新型的LPCVD反應器,它由一個單片放置的石英盤和一個輻射加熱系統組成,可以實現更高的沉積精度和更好的沉積性能,適用于高級產品。氣路系統:氣路系統是用于向LPCVD反應器內送入氣相前驅體和稀釋氣體的設備,它由氣瓶、閥門、流量計、壓力計、過濾器等組成。氣路系統需要保證氣體的純度、流量、比例和穩定性,以控制沉積反應的動力學和動態。真空系統:真空系統是用于將LPCVD反應器內的壓力降低到所需的工作壓力的設備,它由真空泵、真空計、閥門等組成。真空系統需要保證反應器內的壓力范圍、穩定性和均勻性,以影響沉積速率和均勻性。控制系統:控制系統是用于監測和控制LPCVD制程中各個參數的設備,它由傳感器、控制器、顯示器等組成。控制系統需要保證反應器內的壓力、溫度、氣體組成等參數的準確測量和實時調節,以保證沉積質量和性能。聚酰亞胺PI也可作為層間介質應用,具有優異的電絕緣性、耐輻照性能、機械性能等特性。
LPCVD設備的工藝參數還需要考慮以下幾個方面的因素:(1)氣體前驅體的純度和穩定性,影響了薄膜的雜質含量和沉積速率;(2)氣體前驅體的分解和聚合特性,影響了薄膜的化學成分和結構形貌;(3)反應了室內的氣體流動和分布特性,影響了薄膜的厚度均勻性和顆粒污染;(4)襯底材料的熱膨脹和熱應力特性,影響了襯底材料的形變和開裂;(5)襯底材料和氣體前驅體之間的相容性和反應性,影響了襯底材料和薄膜之間的界面反應和相變。真空鍍膜技術普遍應用于工業制造。河南真空鍍膜技術
真空鍍膜技術是現代制造業的重要支柱。河南真空鍍膜實驗室
電子束真空鍍膜的物理過程:物理的氣相沉積技術的基本原理可分為三個工藝步驟:(1)電子束激發鍍膜材料金屬顆粒的氣化:即鍍膜材料的蒸發、升華從而形成氣化源,(2)鍍膜材料粒子((原子、分子或離子)的遷移:由氣化源供出原子、分子或離子(原子團、分子團或離子團)經過碰撞,產生多種反應。(3)鍍膜材料粒子在基片表面的沉積。LPCVD反應的能量源是熱能,通常其溫度在500℃-1000℃之間,壓力在0.1Torr-2Torr以內,影響其沉積反應的主要參數是溫度、壓力和氣體流量,它的主要特征是因為在低壓環境下,反應氣體的平均自由程及擴散系數變大,膜厚均勻性好、臺階覆蓋性好。目前采用LPCVD工藝制作的主要材料有:多晶硅、單晶硅、非晶硅、氮化硅等。河南真空鍍膜實驗室