漏電是芯片另一種常見的失效模式,其誘因復雜多樣,既可能源于晶體管長期工作后的老化衰減,也可能由氧化層存在裂紋等缺陷引發。
與短路類似,芯片內部發生漏電時,漏電路徑中會伴隨微弱的光發射現象——這種光信號的強度往往遠低于短路產生的光輻射,對檢測設備的靈敏度提出了極高要求。EMMI憑借其的微光探測能力,能夠捕捉到漏電產生的極微弱光信號。通過對芯片進行全域掃描,可將漏電區域以可視化圖像的形式清晰呈現,使工程師能直觀識別漏電位置與分布特征。
致晟光電持續精進微光顯微技術,通過算法優化提升微光顯微的信號處理效率。工業檢測微光顯微鏡大概價格多少
失效分析是指通過系統的檢測、實驗和分析手段,探究產品或器件在設計、生產、使用過程中出現故障、性能異?;蚴У母驹颍M而提出改進措施以預防同類問題再次發生的技術過程。它是連接產品問題與解決方案的關鍵環節,**在于精細定位失效根源,而非*關注表面現象。在半導體行業,失效分析具有不可替代的應用價值,貫穿于芯片從研發到量產的全生命周期。
在研發階段,針對原型芯片的失效問題(如邏輯錯誤、漏電、功耗過高等),通過微光顯微鏡、探針臺等設備進行失效點定位,結合電路仿真、材料分析等手段,可追溯至設計缺陷(如布局不合理、時序錯誤)或工藝參數偏差,為芯片設計優化提供直接依據;在量產環節,當出現批量性失效時,失效分析能快速判斷是光刻、蝕刻等制程工藝的穩定性問題,還是原材料(如晶圓、光刻膠)的質量波動,幫助生產線及時調整參數,降低報廢率;在應用端,針對芯片在終端設備(如手機、汽車電子)中出現的可靠性失效(如高溫環境下性能衰減、長期使用后的老化失效),通過環境模擬測試、失效機理分析,可推動芯片在封裝設計、材料選擇上的改進,提升產品在復雜工況下的穩定性。 顯微微光顯微鏡用途微光顯微鏡中,光發射顯微技術通過優化的光學系統與制冷型 InGaAs 探測器,可捕捉低至 pW 級的光子信號。
失效背景調查就像是為芯片失效分析開啟 “導航系統”,能幫助分析人員快速了解芯片的基本情況,為后續工作奠定基礎。收集芯片型號是首要任務,不同型號的芯片在結構、功能和特性上存在差異,這是開展分析的基礎信息。同時,了解芯片的應用場景也不可或缺,是用于消費電子、工業控制還是航空航天等領域,不同的應用場景對芯片的性能要求不同,失效原因也可能大相徑庭。
失效模式的收集同樣關鍵,短路、漏電、功能異常等不同的失效模式,指向的潛在問題各不相同。比如短路可能是由于內部線路故障,而漏電則可能與芯片的絕緣性能有關。失效比例的統計也有重要意義,如果同一批次芯片失效比例較高,可能暗示著設計缺陷或制程問題;如果只是個別芯片失效,那么應用不當的可能性相對較大。
微光顯微鏡下可以產生亮點的缺陷,
如:1.漏電結(JunctionLeakage);2.接觸毛刺(Contactspiking);3.熱電子效應(Hotelectrons);4.閂鎖效應(Latch-Up);5.氧化層漏電(Gateoxidedefects/Leakage(F-Ncurrent));6.多晶硅晶須(Poly-siliconfilaments);7.襯底損傷(Substratedamage);8.物理損傷(Mechanicaldamage)等。
當然,部分情況下也會出現樣品本身的亮點,
如:1.Saturated/Activebipolartransistors;2.SaturatedMOS/DynamicCMOS;3.Forwardbiaseddiodes/Reverse;等
出現亮點時應注意區分是否為這些情況下產生的亮點另外也會出現偵測不到亮點的情況,
如:1.歐姆接觸;2.金屬互聯短路;3.表面反型層;4.硅導電通路等。
若一些亮點被遮蔽的情況,即為BuriedJunctions及Leakagesitesundermetal,這種情況可以嘗試采用backside模式,但是只能探測近紅外波段的發光,且需要減薄及拋光處理。 在超導芯片檢測中,可捕捉超導態向正常態轉變時的異常發光,助力超導器件的性能優化。
相較于傳統微光顯微鏡,InGaAs(銦鎵砷)微光顯微鏡在檢測先進制程組件微小尺寸組件的缺陷方面具有更高的適用性。其原因在于,較小尺寸的組件通常需要較低的操作電壓,這導致熱載子激發的光波長增長。InGaAs微光顯微鏡特別適合于檢測先進制程產品中的亮點和熱點(HotSpot)定位。InGaAs微光顯微鏡與傳統EMMI在應用上具有相似性,但InGaAs微光顯微鏡在以下方面展現出優勢:
1.偵測到缺陷所需時間為傳統EMMI的1/5~1/10;
2.能夠偵測到微弱電流及先進制程中的缺陷;
3.能夠偵測到較輕微的MetalBridge缺陷;
4.針對芯片背面(Back-Side)的定位分析中,紅外光對硅基板具有較高的穿透率。 具備“顯微”級空間分辨能力,能將熱點區域精確定位在數微米甚至亞微米尺度。紅外光譜微光顯微鏡用途
它嘗試通過金屬層邊緣等位置的光子來定位故障點,解決了復雜的檢測難題。工業檢測微光顯微鏡大概價格多少
微光顯微鏡無法檢測不產生光子的失效(如歐姆接觸、金屬短路),且易受強光環境干擾;熱紅外顯微鏡則難以識別無明顯溫度變化的失效(如輕微漏電但功耗極低的缺陷),且溫度信號可能受環境熱傳導影響。
實際分析中,二者常結合使用,通過 “光 - 熱” 信號交叉驗證,提升失效定位的準確性。致晟光電在技術創新的征程中,實現了一項突破性成果 —— 將熱紅外顯微鏡與微光顯微鏡集可以集成于一臺設備,只需一次采購,便可以節省了重復的硬件投入。 工業檢測微光顯微鏡大概價格多少